
Testix
Release 10.2.1

Yoav Kleinberger

May 26, 2023

CONTENTS:

1 The Test-First Mocking Framework 1

2 Quick Example 3

3 Some Advanced Features 5

4 Advantages 7

5 Read More 9
5.1 Reference . 9
5.2 Tutorial . 20

i

ii

CHAPTER

ONE

THE TEST-FIRST MOCKING FRAMEWORK

Testix is the Test-First (TDD) Friendly Mocking framework for Python, meant to be used with pytest

Warning: These docs are under development!

Testix is special because it allows you to specify what your mock objects do, and it then enforces your specifications
automatically. It also reduces (albeit not entirely) mock setup.

Other frameworks usually have a flow like this:

1. setup mock

2. let code do something with mock

3. assert mock used in correct way

Testix flow is a bit different

1. setup mock objects

2. specify exactly what should happen to them using a Scenario context

1

https://docs.pytest.org/en/latest/

Testix, Release 10.2.1

2 Chapter 1. The Test-First Mocking Framework

CHAPTER

TWO

QUICK EXAMPLE

Here is a quick example of how Testix works.

to test the Chatbot class, we pass it a mock socket called "sock"
tested = chatbot.Chatbot(Fake('sock'))

create a Scenario context
inside, you specify exactly what the unit should do with the objects its handed
with Scenario() as s:

s.sock.recv(4096) >> 'request text' # unit must call sock.recv(4096).
this call will return 'request text'

s.sock.send('response text')

call your unit's code
tested.go()

Scenario context ends, and verifies everything happened exactly as specified
No more, no less

Note that you do not have to setup sock.recv or sock.send - once sock is set up, it will generate other mock objects
automatically as you go along with it. Only “top level” mock objects need to be setup explicitly.

The Scenario object does essentially two things:

1. setup our expectations (these are the s.sock.* lines)

2. enforce our expectations (this is done by the with statement)

Want to know more? Read the :doc:tutorial.

3

Testix, Release 10.2.1

4 Chapter 2. Quick Example

CHAPTER

THREE

SOME ADVANCED FEATURES

Testix natively and elegantly supports testing for

1. Context managers (with statement constructs)

2. async code

3. async context managers (async with statement constructs)

4. Hooks - allowing you to simulate asynchronous events that happen between two lines of your code

5

Testix, Release 10.2.1

6 Chapter 3. Some Advanced Features

CHAPTER

FOUR

ADVANTAGES

Testix has been written to promote the following

1. Readability - the expectations are very similar to the actual code that they test (compare s.sock.recv(4096)
with the standard sock.recv.assert_called_once_with(4096)

2. Test Driven Development friendliness: if you use sock.recv.assert_called_once_with(4096), you must
use it after the code has run. With Testix, you specify what you expect, and the asserting is done for you by
magic.

What are you waiting for?

Go to the reference or read the Tutorial

7

Testix, Release 10.2.1

8 Chapter 4. Advantages

CHAPTER

FIVE

READ MORE

5.1 Reference

5.1.1 Basic Usage: Scenarios and Fake Objects

Scenarios and Fake Objects

Testix is a mocking framework designed to support the TDD style of programming. When writing a test with Testix,
we use a Scenario() object to specify what should happen or what we expect should happen when the tested code is
run. We can refer to these as demands or expectations.

Here’s a test that expects the tested code to repeatedly call .recv(4096) on a socket, until an empty sequence is
returned, and then call .close() on the socket. Furthermore, tested.read() should return the accumulated data.

1 from testix import *
2

3 import reader
4

5 def test_read_all_from_socket():
6 with Scenario() as s:
7 s.sock.recv(4096) >> b'data1'
8 s.sock.recv(4096) >> b'data2'
9 s.sock.recv(4096) >> b'data3'

10 NO_MORE_DATA = b''
11 s.sock.recv(4096) >> b''
12 s.sock.close()
13

14 tested = reader.Reader(Fake('sock'))
15 assert tested.read() == b'data1data2data3'

Scenarios track fake objects - instances of Fake. Fake objects have a name, e.g. Fake('sock') - and you can demand
various method calls on a fake object, e.g.

s.sock.recv(4096) >> b'data1'

Means “we require that the .recv() method be called on the fake object named 'sock' with exactly one argument:
the number 4096. When this happens, this function call will return b'data1' to the caller”.

Note this last part - when we define an expectation, we may also define the return value returned should the expectation
come true.

The code which passes this test is

9

Testix, Release 10.2.1

1 class Reader:
2 def __init__(self, socket):
3 self._sock = socket
4

5 def read(self):
6 accumulated = b''
7 while True:
8 data = self._sock.recv(4096)
9 if data == b'':

10 self._sock.close()
11 return accumulated
12 accumulated += data

The Scenario() object helps us define our expectations from our code, and also enforces these expectations when
used, as above, in a with Scenario() as s statement. When the with ends, the Scenario object will make sure
that all expectations have been exactly met.

Try to comment out some lines in the Reader class, and you will see that the test no longer passes. E.g. if you comment
out the .close() call you will get

> return pytest.fail(message)
...
E Scenario ended, but not all expectations were met. Pending expectations␣
→˓(ordered): [sock.close()]

Testix tells you that not all expectations were met, like it should.

More Complex Expectations

You can specify any number of arguments, and also keyword arguments, e.g.

s.alpha.func1(1, 2, a=1, b='hi there')

This will ensure that the .func1() method is called on the Fake("alpha") object exactly like this:

def my_code(a):
a.func1(1, 2, a=1, b='hi there')

With this definition, my_code(Fake("alpha")) will pass the test. The value returned from .func1() in this case
will be None. If you want to specify a return value, use >> as before

s.alpha.func1(1, 2, a=1, b='hi there')

Overriding Imported Modules With Fake Objects

Since Scenario can only track Fake objects, the tested code must have access to them. We already saw one way this
can happen, when we pass in a fake, e.g.

tested = reader.Reader(Fake('sock'))

Another common pattern with Testix is to override some global names inside the tested module - this essentially over-
rides import statements.

10 Chapter 5. Read More

Testix, Release 10.2.1

Here is an example of overriding the socket import using Testix’s patch_module pytest fixture. This test demands
that the MyServer() object create a socket, listen on it, accept a connection, send b'hi' over this connection, then
close it.

1 from testix import *
2 import pytest
3 import my_server
4

5 @pytest.fixture(autouse=True) # if autouse is not used here, you will have to specify␣
→˓override_imports as an argument to test_my_server() below

6 def override_imports(patch_module):
7 patch_module(my_server, 'socket') # replace socket with Fake('socket')
8

9 def test_my_server():
10 with Scenario() as s:
11 s.socket.socket() >> Fake('server_sock')
12 s.server_sock.listen()
13

14 s.server_sock.accept() >> (Fake('connection'), 'some address info')
15 s.connection.send(b'hi')
16 s.connection.close()
17

18 tested = my_server.MyServer()
19 tested.serve_request()
20

NOTE: The patch_module helper will, when the test is over, return the original object to its place. It’s important to
use patch_module and not do it yourself.

Another important point is that patch_module overrides global names, go, e.g. if we use patch_module like this

patch_module(my_module, 'xxx')

And my_module has this code

xxx = 300

def get_xxx():
return xxx

Then xxx will not be 300 for the duration of the test, but instead have a fake object by the same name Fake("xxx").

This will also be the case if my_module had

from important_constants import xxx

def get_xxx():
return xxx

5.1. Reference 11

https://docs.pytest.org/en/7.1.x/explanation/fixtures.html#about-fixtures

Testix, Release 10.2.1

Using patch_module To Mock Builtin Objects

We can also use patch_module to override builtin objects, such as the function open().

patch_module(my_module, 'open')

sometime later
s.open('some_file.txt', 'w') >> Fake('open_file')

Using patch_moduleWith Arbitrary Values

Usually we use patch_module to override module-level names with Fake objects, but you can specify any object as
the override

patch_module(my_module, 'xxx', 500) # override xxx value with 500

The Most Common Ways To Create Fake Objects

So, Fake objects can be created and passed in directly, they can be used to mock imported modules using
patch_module, and they can be returned as the result of another Fake object call, e.g. the line

s.socket.socket() >> Fake('server_sock')

In fact, in this line as well as in the one that follows:

s.server_sock.accept() >> (Fake('connection'), 'some address info')

There is, in fact, another method that creates Fake objects. The preceding line specifies that server_sock.accept is
called - which, under the hood, implies the creation of a Fake("server_sock.accept") fake object.

To summarize, the main modes where fakes are created are:

1. Created and passed in directly

2. Created and returned as the return value of an expectation

3. Replacing a global name (usually an imported module) using patch_module

4. Implicitly created when addressing a method of a fake object, e.g. server_sock.accept above.

5.1.2 Less Strict Expectations

Less Specific Arguments

Sometimes you want to specify an expectation, but with less strict demands.

Continuing with the previous example, maybe we don’t care that much that 4096 be used when calling .recv()

This can be accomplished using IgnoreArgument(), e.g.

1 from testix import *
2

3 import reader
4

(continues on next page)

12 Chapter 5. Read More

Testix, Release 10.2.1

(continued from previous page)

5 def test_read_all_from_socket():
6 with Scenario() as s:
7 s.sock.recv(IgnoreArgument()) >> b'data1'
8 s.sock.recv(IgnoreArgument()) >> b'data2'
9 s.sock.recv(IgnoreArgument()) >> b'data3'

10 NO_MORE_DATA = b''
11 s.sock.recv(IgnoreArgument()) >> b''
12 s.sock.close()
13

14 tested = reader.Reader(Fake('sock'))
15 assert tested.read() == b'data1data2data3'

You can also use IgnoreArgument() to specify that you demand some kwarg be used, but you don’t care about it’s
value

s.alpha.func1(1, 2, a=IgnoreArgument(), b='hi there')

must use (1, 2, a=<any object here>, b='hi there')

Unordered Expectations

Most of the time, in my experience, it’s a good idea that expectations are met in the exact order that they were specified.

s.alpha.func1(1, 2)
s.alpha.func2('this must come after func1')

These expectations will only be met if .func2() is called after .func1() was called.

However, sometimes we want to relax this a little, and demand that some function is called, but you don’t care if it’s
before or after some other function. You can do this by using the .unordered() modifier:

1 from testix import *
2

3 def test_unordered_expecation():
4 with Scenario() as s:
5 s.some_object('a')
6 s.some_object('b')
7 s.some_object('c').unordered()
8

9 my_fake = Fake('some_object')
10 my_code(my_fake)
11

12 def my_code(x):
13 x('a')
14 x('c')
15 x('b')

This demands that the fake is called with 'b' only after it was called with 'a' - but it forgives the call with 'c' - you
can call the fake with 'c' before, after on in between the 'a' and 'b' calls.

The code in my_code() passes this test.

5.1. Reference 13

Testix, Release 10.2.1

5.1.3 Context Manager Expectations

Sometimes we want to demand that an object is used as a context manager in a with statement.

Here’s an example of how to demand this on a fake object named 'locker', using Scenarios special __with__
modifier, along with the code that passes the test.

1 from testix import *
2

3 def test_fake_context():
4 locker_mock = Fake('locker')
5 with Scenario() as s:
6 s.__with__.locker.Lock() >> Fake('locked')
7 s.locked.read() >> 'value'
8 s.locked.updater.go('another_value')
9 my_code(locker_mock)

10

11

12 def my_code(locker):
13 with locker.Lock() as locked:
14 whatever = locked.read()
15 locked.updater.go(f'another_{whatever}')

5.1.4 Advanced Argument Expectations

Most of our examples of working with Scenario expectations are of exact matches, e.g.

s.classroom.set('A', index=9, name='Alpha')

Means we expect the .set()method to be called on the fake object Fake('classroom')with these exact arguments:
a positional argument with the value 'A', and two keyword arguments index=9, name='Alpha'.

In most cases this is exactly what we want. However, sometimes we want something else. Let’s see what Testix supports.

Ignoring The Call Details

What if we want to make sure a method is called, but we don’t care about the arguments at all? This is what
IgnoreCallDetails() is for, e.g. this test expects the .connect() method to be called on the fake object
Fake('database') three times, but specifies that it doesn’t care about the exact arguments:

1 from testix import *
2

3 import server
4

5 def test_person_connects_somehow():
6 with Scenario() as s:
7 s.database.connect(IgnoreCallDetails())
8 s.database.connect(IgnoreCallDetails())
9 s.database.connect(IgnoreCallDetails())

10

11 tested = server.Server(Fake('database'))
12 tested.connect1()

(continues on next page)

14 Chapter 5. Read More

Testix, Release 10.2.1

(continued from previous page)

13 tested.connect2()
14 tested.connect3()

Here is an example of code that passes this test

1 class Server:
2 def __init__(self, database):
3 self._database = database
4

5 def connect1(self):
6 self._database.connect()
7

8 def connect2(self):
9 self._database.connect(1, 2, 3, x='y')

10

11 def connect3(self):
12 self._database.connect(a='1', b='2', c='3')

As you can see, the .connect() method is called three times, but with different arguments each time, and this satisfies
the IgnoreCallDetails() expectation.

Testing for Object Identity

Sometimes we want to ensure a method is called with a specific object. We are not satisfied with it being called with
an equal object, we want the same actual object. That is, we are interested in testing actual is expected and not
actual == expected.

We can do this with ArgumentIs. Here is an example:

1 import pytest
2 from testix import *
3

4 import classroom
5

6 def test_this_will_pass():
7 joe = classroom.Person('Joe')
8 with Scenario() as s:
9 s.mylist.append(ArgumentIs(joe))

10

11 tested = classroom.Classroom(Fake('mylist'))
12 tested.enter_original(joe)
13

14 def test_this_will_fail():
15 joe = classroom.Person('Joe')
16 with Scenario() as s:
17 s.mylist.append(ArgumentIs(joe))
18

19 tested = classroom.Classroom(Fake('mylist'))
20 tested.enter_copy(joe)

We list here two tests, both demand that the object passed to mylist.append() will be the actual object joe created
at the start of the test. The test test_this_will_fail() is made to fail on purpose by using the wrong method on
the tested object, this is the code that passed (and fails) these tests:

5.1. Reference 15

Testix, Release 10.2.1

1 class Person:
2 def __init__(self, name):
3 self.name = name
4

5 def __eq__(self, other):
6 return self.name == other.name
7

8 class Classroom:
9 def __init__(self, people: list):

10 self._people = people
11

12 def enter_original(self, student):
13 self._people.append(student)
14

15 def enter_copy(self, student):
16 self._people.append(Person(student.name))

If we didn’t use ArgumentIs and just used

s.mylist.append(joe)

The test_this_will_fail() test would have passed, because joe is equal to the object passed to .append() as
defined by the __eq__ method. With ArgumentIs, however, you will get something like this failure message:

E testix: ExpectationException
E testix details:
E === Scenario (no title) ===
E expected: mylist.append(|IS <classroom.Person object at 0x7f5162c2c5e0>|)
E actual : mylist.append(<classroom.Person object at 0x7f5162c2c250>)

Capturing Arguments

Sometimes we don’t want to demand anything about a method’s arguments, but we do want to capture them. This is
useful for when we want to simulate the triggering of an internal callback.

For example, suppose we have a class which implements some logic when the process ends via an atexit
<https://docs.python.org/3/library/atexit.html>_ handler. Testing this might seem hard, since we don’t want to actu-
ally make the process (which is running our test) exit.

Here’s how to do it using Testix’s SaveArgument feature.

1 from testix import *
2 import pytest
3 import robot
4

5 @pytest.fixture
6 def mock_imports(patch_module):
7 patch_module(robot, 'atexit') # mock atexit module
8

9 def test_atexit_handler(mock_imports):
10 with Scenario() as s:
11 s.atexit.register(saveargument.SaveArgument('the_handler'))
12

(continues on next page)

16 Chapter 5. Read More

Testix, Release 10.2.1

(continued from previous page)

13 tested = robot.Robot(cleanup_func=Fake('cleanup_logic'))
14

15 handler = saveargument.saved()['the_handler']
16 s.cleanup_logic(1, 2, 3)
17

18 handler()

We use saveargument.SaveArgument() to capture the argument passed to atexit.register(), and name this
captured argument the_handler.

We later retrieve the captured callback via the saveargument.saved() dictionary.

This enables us to trigger the callback ourselves by calling handler() - which satisfies our demand s.
cleanup_logic(1, 2, 3).

NOTE a simpler way might have been to make the _cleanup() function public, and then we could just call it: tested.
cleanup(). However, if this is not called in our code, we should not make it public, and since we are forbidden by
good ethics from accessing a private function from outside the class, we need to capture it.

Implementing Arbitrary Argument Matching

Sometimes you need some complicated logic that Testix doesn’t support out of the box.

You can define your own argument expectation classes with some arbitrary logic, and use them in your tests, by imple-
menting classes derived from the ArgumentExpectation base class, which is essentially an interface:

class ArgumentExpectation:
def __init__(self, value):

self.expectedValue = value

def ok(self, value):
returns true if value meets the expectation, false otherwise
raise Exception("must override this")

The following tests implements a new StartsWith expectation, which expects a string that starts with a given prefix.

1 import pytest
2 from testix import *
3

4 import temporary_storage
5

6 @pytest.fixture(autouse=True)
7 def mock_builtin(patch_module):
8 patch_module(temporary_storage, 'open')
9

10 class StartsWith(ArgumentExpectation):
11 def ok(self, value):
12 return value.startswith(self.expectedValue)
13

14 def test_person_connects_somehow():
15 with Scenario() as s:
16 s.open(StartsWith('/tmp/'), 'w') >> Fake('the_file')
17 s.the_file.write('file_name: some_file\n\n')
18

(continues on next page)

5.1. Reference 17

Testix, Release 10.2.1

(continued from previous page)

19 tested = temporary_storage.TemporaryStorage()
20 the_file = tested.create_file('some_file')
21 assert the_file is Fake('the_file')

We demand that open() be called with a filename that starts with /tmp/, and with exactly 'w' as the second argument.

This code passes this test:

1 class TemporaryStorage:
2 def create_file(self, filename):
3 f = open('/tmp/' + filename, 'w')
4 f.write('file_name: ' + filename + '\n\n')
5 return f

The ArgumentExpectation base class implements a default __repr__ function, but you can implement one yourself
e.g.

class StartsWith(ArgumentExpectation):
def ok(self, value):

return value.startswith(self.expectedValue)

def __repr__(self):
return 'StartsWith({})'.format(repr(self.expectedValue))

Using this ArgumentExpectation interface, you can make Testix support any arbitrary and complicated argument
verification you need.

5.1.5 AsyncIO Support

Testix offers support for testing asynchronous code, that is code which takes advantage of Python’s async and await
keywords.

Testix’s async support has been tested to work with pytest-asyncio.

AsyncIO Expectations

You can specify that a method call should be awaited using the __await_on__ modifier of the Scenario, as in the
example below. As you can see, you may also mix and match sync and async expectations.

1 from testix import *
2 import pytest
3

4 @pytest.mark.asyncio
5 async def test_async_expectations():
6 with scenario.Scenario('awaitable test') as s:
7 s.__await_on__.my_fake('some data') >> fake.Fake('another_fake')
8 s.__await_on__.another_fake() >> fake.Fake('yet_another')
9 s.__await_on__.yet_another() >> Fake('last_one')

10 s.last_one.sync_func(1, 2, 3) >> 'sync value'
11

12 assert await my_code(Fake('my_fake')) == 'sync value'
13

(continues on next page)

18 Chapter 5. Read More

https://github.com/pytest-dev/pytest-asyncio

Testix, Release 10.2.1

(continued from previous page)

14 async def my_code(thing):
15 another = await thing('some data')
16 yet_another = await another()
17 last_one = await yet_another()
18 return last_one.sync_func(1, 2, 3)

Note that the test function itself is async and that you have to use the pytest.mark.asyncio decorator on the test -
this decorator makes sure the test runs inside an asyncio event loop.

Note that the __await_on__ changes the expectation .my_fake('some data') into two expectations - the function
call, and the use of await-ing. You can see this, if, e.g., you cut my_code(thing) short by replacing its first line with
return 'sync value'. This is the correct value, so the assert statement passes, however the Scenario context
will inform you that

E Scenario ended, but not all expectations were met. Pending expectations␣
→˓(ordered):
[my_fake('some data'), await on my_fake('some data')@cb28287a42fc(),
another_fake(), await on another_fake()@94bb8afd7e45(),
yet_another(), await on yet_another()@b09a73bf3ee0(),
last_one.sync_func(1, 2, 3)]

You can see that every __await_on__ results in a special expectation representing it.

AsyncIO Context Managers

You can specify your expectation for an object to be used as an async context manager (i.e. in an async with statement)
by using the __async_with__ modifier. Here’s an example testing a module called async_read which has an async
function go() which reads the contents of a file asynchronously.

1 from testix import *
2 import pytest
3

4 import async_read
5

6 @pytest.fixture(autouse=True)
7 def override_import(patch_module):
8 patch_module(async_read, 'aiofiles')
9

10 @pytest.mark.asyncio
11 async def test_read_write_from_async_file():
12 with scenario.Scenario() as s:
13 s.__async_with__.aiofiles.open('file_name.txt') >> Fake('the_file')
14 s.__await_on__.the_file.read() >> 'the text'
15

16 assert 'the text' == await async_read.go('file_name.txt')

Note our use of patch_module to mock the aiofiles library, which we assume is imported and used by our async_read
module.

The code which passes this test is

1 import aiofiles
2

(continues on next page)

5.1. Reference 19

https://pypi.org/project/aiofiles/

Testix, Release 10.2.1

(continued from previous page)

3 async def go(filename):
4 async with aiofiles.open(filename) as f:
5 return await f.read()

Note you do not have to specify a return value with >> for the __async_with__ expectation if you want to use the
“anonymous” form of the async with statement:

async with lock(): # no "as" part
await handle_critical_data()

5.2 Tutorial

This tutorial will walk you through Test Driven Development using Testix and pytest.

We will develop a small project in this tutorial, test driven of course, which solves the following real-life problem:
suppose you want to run some subprocess, and you want to read its output line-by-line in real time and take appropriate
action.

An example application might be that you want to monitor live logs and do something whenever a log line has ERROR
in it.

Let’s call this library LineMonitor.

5.2.1 Design of the LineMonitor

Python has an excellent library called subprocess, which allows a quite generic inteface for launching subprocsses using
its Popen class.

We want to have a LineMonitor class which:

1. will launch subprocesses using subprocess under the hood

2. will allow the caller to register callbacks that get called from every line of output from the subprocess

3. will also implement an iterator form, e.g. you can write something like

for line in line_monitor:
print(f'this just in: {line}')

Since this is a Test Driven Development tutorial as well as a Testix tutorial, let’s discuss the tests.

First a short primer on types of tests.

Unit Tests

Unit tests check that each unit of code (usually a single class or module) performs the correct business logic.

Generally speaking, unit tests

1. test logic

2. do not perform I/O (perhaps only to local files)

3. use mocks (not always, but many times) - this is where Testix comes in.

20 Chapter 5. Read More

https://en.wikipedia.org/wiki/Test-driven_development
https://docs.pytest.org/en/latest/
https://docs.python.org/3/library/subprocess.html

Testix, Release 10.2.1

Integration Tests

Integration tests test that various “units” fit together.

Generally speaking, integration tests

1. perform some actual I/O

2. do not rigorously test logic (that’s the unit test’s job)

End-to-End (E2E) Tests

In our case, since the project is quite small, the integration test will actually test the scope of the entire project. and so
it is more appropriately called an End-to-End (E2E) Test.

In real projects, E2E tests usually include

1. an actual deployment, which is as similar as possible to real life deployments.

2. various UI testing techniques, e.g. launching a web-browser to use some webapp

In our toy example, we don’t have such complications.

Let’s move on.

5.2.2 End-to-End Test

When we say “Test First” - this means that we go about thinking about our code by thinking about how to test that it
works.

When we say “Test Driven” - this means that we let our thinking about tests define how the code will work.

In this way, the tests drive our development.

So, how should we go about testing that everything works in our LineMonitor library? obviously, we should launch
a subprocess which known output, and see that we can get all the lines emitted into a callback which we define.

So we want our users to do something like this

import line_monitor.monitor

captured_lines = []

monitor = line_monitor.LineMonitor(['ls', '-l'], on_output=captured_lines.append) #␣
→˓launch `ls -l` to list the files, lines get appended into our captured_lines list
monitor.monitor() # monitor process until it ends
for line in captured_lines:

print(f'saw this: {line}')

Now that we have a rough idea, let’s write a test which will make this precise. The code below is not the final test, and
will not really work, but it’s a sketch:

Listing 1: end-to-end (E2E) test

1 import line_monitor
2

3 def test_line_monitor():
4 captured_lines = []

(continues on next page)

5.2. Tutorial 21

Testix, Release 10.2.1

(continued from previous page)

5 tested = line_monitor.LineMonitor()
6 tested.register_callback(captured_lines.append)
7 PRINT_10_LINES_COMMAND = ['python', '-c', 'for i in range(10): print(f"line {i}")']
8 tested.launch_subprocess(PRINT_10_LINES_COMMAND)
9 tested.monitor()

10 EXPECTED_LINES = [f'line {i}\n' for i in range(10)]
11 assert captured_lines == EXPECTED_LINES

What do we have here? We create the tested object, a LineMonitor object called tested. We provide it a callback
(which is just the .append method on the captured_lines list). We then tell it to launch the subprocess with similar
arguments to subprocess.Popen - and we give it a specific subprocess which we know will print 10 lines of output.
Finally, after the subprocess has ended we test that the captured output is what we expect it to be.

Tests Driving our Code

Note that in the process of developing the test, we chose the names of various API calls, e.g. launch_subprocess
(we could have launched the subprocess in the constructor like in the draft we wrote before, but it felt more natural to
me to separate the creation of a LineMonitor object from actual launching of a subprocess).

This is what we mean when we say that tests drive development.

However, to truly work Test Driven - we need to make this test fail properly.

5.2.3 Failing Properly

For convenience, here again is our End-to-End Test:

Listing 2: end-to-end (E2E) test

1 import line_monitor
2

3 def test_line_monitor():
4 captured_lines = []
5 tested = line_monitor.LineMonitor()
6 tested.register_callback(captured_lines.append)
7 PRINT_10_LINES_COMMAND = ['python', '-c', 'for i in range(10): print(f"line {i}")']
8 tested.launch_subprocess(PRINT_10_LINES_COMMAND)
9 tested.monitor()

10 EXPECTED_LINES = [f'line {i}\n' for i in range(10)]
11 assert captured_lines == EXPECTED_LINES

If we run it will of course not work:

$ python -m pytest docs/line_monitor/tests/e2e

Results ultimately in

E ModuleNotFoundError: No module named 'line_monitor'

That is because none of the code for line_monitor exits yet. This is a sort of failure, but it’s not very interesting.

What we want is for the test to fail properly - we want it to fail not because our system doesn’t exist - we want it to fail
because our system does not implement the correct behaviour yet.

22 Chapter 5. Read More

Testix, Release 10.2.1

In concrete terms, we want it to fail because a subprocess has seemingly been launched, but its output has not been
captured by our monitor. In short, we want it to fail on our assert statements, not due to some technicalities

So, let’s write some basic code that achieves just that. We create a line_monitor.py file within our import path
with skeleton code:

Listing 3: line_monitor.py

1 class LineMonitor:
2 def register_callback(self, callback):
3 pass
4

5 def launch_subprocess(self, *popen_args, **popen_kwargs):
6 pass
7

8 def monitor(self):
9 pass

Now if we run the test:

$ python -m pytest docs/line_monitor/tests/e2e

We get a proper failure

....... OUTPUT SKIPPED FOR BREVITY

> assert captured_lines == EXPECTED_LINES
E AssertionError: assert [] == ['line 0', 'l...'line 5', ...]

This is a proper failure - the test has done everything right, but the current LineMonitor implementation does not
deliver on its promises.

The Importance of Proper Failure

Congratulations, we have a failing test! This is the first milestone when developing a feature using Test Driven Devel-
opment. Let’s briefly explain whey this is so important, and why this is superior to writing tests for previously written,
already working code.

Essentially, imagine we wrote a test, wrote some skeleton code, ran the test - and it didn’t fail. Well, that would
obviously mean that our test was bad. This is admittedly rare, but I’ve seen it happen.

The more common scenario however is that we wrote the test, wrote the skeleton code, ran the test - and it failed, but
not in the way we planned. This means that the test does not, in fact, test what we want.

If we write our test after we’ve developed our code, how will we ever know that the test actually tests what we think it
is testing? You’d be amazed at the number of tests which exist out there and in fact, do not test what they are supposed
to.

I have seen with my own eyes, many times, tests that do not test anything at all. This happens because once code has
been written, the tests are written to accommodate the code, which is exactly the opposite of what should happen.

The last point is super important so I will rephrase it in a more compelling way: think about testing the performance of
a human being, not a computer program, e.g. testing a student in high school or university. Should we have the student
write his or her answers first, and then write the test to accommodate these answers? Utterly absurd.

We should write the test first, and then use it to test the student.

If we write our tests first, and fail them properly,

5.2. Tutorial 23

Testix, Release 10.2.1

1. we make sure they actually test what they pretend to to

2. we think hard about how to test this functionality - we gain focus on what our software is supposed to do

3. we take pains to actually think about how the code will be use: we let the test drive the design of the application

So, it is essential before developing some behaviour, that our tests fail properly.

Now, let’s get on with implementing the LineMonitor. This will require - surprise - some more tests - unit tests, which
is what Testix is all about.

5.2.4 Testix Basics

It’s time to start writing unit tests using Testix. In this section we’ll cover all the basics, then move on to our more
complete LineMonitor example.

Working With Scenarios and Fake Objects

In this part we introduce the basic building blocks of writing a unit test with Testix. As mentioned in Unit Tests, this is
where we test our business logic: the required behaviour and edge cases. To control carefully how our code interacts
with the outside world, we use so called Mock objects or as they are sometimes called Fake objects.

Before seeing how Testix does it, let’s review the concept of Mock objects.

Mock Objects

Mock Objects are objects that simulate some object that our code needs to interact with, that we want to test carefully.
As an example - suppose our code needs to send data over a socket, which it receives as a parameter called sock

send_some_data(sock, b'the data')

When testing we

1. don’t really want to send data over a real socket

2. do want to verify that the send_some_data function called sock.send(b'the data').

The solution is to pass send_some_data an object that implements a .send method, but which is not an actual socket.
Instead this object will just record that .send was called, and we’ll be able to query it to see that it was called with
b'the data'. The idea here is that there’s no point testing sockets - we know that those work. The point here is to
test that our code does the right thing with the socket.

The Standard Library Way - unittest.mock

The approach taken by the standard unittest.mock module from the Python standard library, is to provide us with a
generic Mock class which records every call that is made to it, and has some helper functions to help as assret that some
things happened.

import unittest.mock

def test_sending_data():
sock = unittest.mock.Mock()
send_some_data(sock, b'the data')
sock.send.assert_called_with(b'the data') # this verifies that `send_some_data` did␣

→˓the right thing

24 Chapter 5. Read More

https://docs.python.org/3/library/unittest.mock.html

Testix, Release 10.2.1

Let’s see how Testix approaches the same idea. We will discuss the advantages of the Testix way later on.

Testix Fake Objects and Scenarios

Setting the Expectations

We’ll start by introducing a test for send_some_data and then explaining it.

Note that first we need to fail the test - so send_some_data here is only a skeleton implementation that really does
nothing.

Listing 4: test_sending_data.py

1 from testix import *
2

3 import data_sender
4

5 def test_sending_data():
6 fake_socket = Fake('sock')
7 with Scenario() as s:
8 s.sock.send(b'the data')
9

10 data_sender.send_some_data(fake_socket, b'the data')

Listing 5: data_sender.py skeleton implementation

def send_some_data(socket, data):
pass

What’s going on here? First, we create a Fake object sock - this is Testix generic mock object - note that we define
a name for it explicitly - 'sock'. We then start a Scenario() context manager in the with Scenario() as s
statement.

A Scenario is a way to specify the required behaviour - what do we demand happen to our fake objects? In this case,
we specify one demand:

s.sock.send(b'the data')

This means - we expect that the Fake object method sock.send be called with b'the data' as the argument. When
the Scenario context ends - the Scenario object will automatically enforce these expectations, as we’ll see shortly.

Finally - we cannot hope to meet the demands of the test without actually calling the code:

send_some_data(fake_socket, b'the data')

Let’s try to run this test. Of course we expect failure - the send_some_data function does not, after all, send the data.

$ python -m pytest -v docs/tutorial/other_tests/data_sender_example/1

....... OUTPUT SKIPPED FOR BREVITY
E Failed:
E testix: ScenarioException

(continues on next page)

5.2. Tutorial 25

Testix, Release 10.2.1

(continued from previous page)

E testix details:
E Scenario ended, but not all expectations were met. Pending expectations␣
→˓(ordered): [sock.send(b'the data')]

As you can see, Testix tells us that “not all expectations were met”, and details the missing expectation in a list: sock.
send(b'the data').

We have a properly failing test, yay!

Meeting the Expectations

Now that we know that the test’s expecations aren’t being met - let’s change the code to meet them:

Listing 6: meet the demand for sending data

def send_some_data(socket, data):
socket.send(data)

Now our tests pass

python -m pytest -v docs/tutorial/other_tests/data_sender_example/2

docs/tutorial/other_tests/data_sender_example/2/test_sending_data.py::test_sending_data␣
→˓PASSED

Yay :)

Let’s say that now we want our sending function to send a specific header before the data which specifies the data’s
length. Since we’re doing TDD here, we first set our expectations in the test

Listing 7: testing for a header

1 from testix import *
2

3 import data_sender
4

5 def test_sending_data():
6 fake_socket = Fake('sock')
7 with Scenario() as s:
8 s.sock.send(b'SIZE:8 ')
9 s.sock.send(b'the data')

10

11 data_sender.send_some_data(fake_socket, b'the data')

Now our scenario demands that send() be called twice - once with the header, and then with the data.

Next move - let’s see that our test fails properly. When we run it we get

E Failed:
E testix: ExpectationException
E testix details:
E === Scenario (no title) ===
E expected: sock.send(b'SIZE:8 ')
E actual : sock.send(b'the data')

(continues on next page)

26 Chapter 5. Read More

Testix, Release 10.2.1

(continued from previous page)

E === OFFENDING LINE ===
E socket.send(data) (/home/yoav/work/testix/docs/tutorial/tests/data_sender.py:2)
E === FURTHER EXPECTATIONS (showing at most 10 out of 1) ===
E sock.send(b'the data')
E === END ===

What happened here? Well, the scenario wants to see sock.send(b'SIZE:8 ') - however, since we have not changed
our code yet, the actual call is the good old sock.send(b'the data'), therefore the expected call is different from
the actual call, and Testix fails the test for us. It also specifies the particuar line that got us in trouble, and gives us a
peek into the next expecations in the scenario.

Good news, we have a properly failing test. Now, let’s meet the demands:

Listing 8: sending a header 1

1

2 def send_some_data(socket, data):
3 length = len(data)
4 header = b'SIZE:' + bytes(str(length), encoding='latin-1')
5 socket.send(header)
6 socket.send(data)

OK let’s go:

E Failed:
E testix: ExpectationException
E testix details:
E === Scenario (no title) ===
E expected: sock.send(b'SIZE:8 ')
E actual : sock.send(b'SIZE:8')
E === OFFENDING LINE ===
E socket.send(header) (/home/yoav/work/testix/docs/tutorial/tests/data_sender_
→˓prefix.py:5)
E === FURTHER EXPECTATIONS (showing at most 10 out of 1) ===
E sock.send(b'the data')

Oops! Seems like we forgot a b' ', let’s correct our code:

Listing 9: sending a header 2

1

2

3 def send_some_data(socket, data):
4 length = len(data)
5 header = b'SIZE:' + bytes(str(length), encoding='latin-1') + b' '
6 socket.send(header)
7 socket.send(data)

Now the test passes.

$ python -m pytest -v docs/tutorial/other_tests/data_sender_example/prefix_2

docs/tutorial/other_tests/data_sender_example/prefix_2/test_sending_data.py::test_
→˓sending_data PASSED

5.2. Tutorial 27

Testix, Release 10.2.1

More Advanced Tests

Specifying Return Values

Previously we have specified how a Fake object named "sock" should be used by our code.

When we say s.sock.send(b'the data') we express the expectation that the code under test will call the .send()
method with exactly one argument, whose value should equal exactly b'the data'.

When the code does this with "sock"’s .send() method, however, what value is returned by method call?

The answer in this case is None - but Testix also allows us to define this return value. This is useful when you want to
test thing related to what function calls on Fake objects return, e.g. thing about testing some code that receives data
on one socket, and sends the length of said data to another socket.

We therefore expect that there will be a .recv() call on one socket which returns some data, this data in turn is
converted to a number (its length), which is then encoded and sent on the outgoing socket.

Here’s how to test this in Testix

1 from testix import *
2 import forwarder
3

4 def test_forward_data_lengths():
5 tested = forwarder.Forwarder()
6 incoming = Fake('incoming_socket')
7 outgoing = Fake('outgoing_socket')
8 with Scenario() as s:
9 # we'll require that the length of the data is sent, along with a ' ' separator

10 s.incoming_socket.recv(4096) >> b'some data'
11 s.outgoing_socket.send(b'9 ')
12 s.incoming_socket.recv(4096) >> b'other data'
13 s.outgoing_socket.send(b'10 ')
14 s.incoming_socket.recv(4096) >> b'even more data'
15 s.outgoing_socket.send(b'14 ')
16

17 tested.forward_once(incoming, outgoing)
18 tested.forward_once(incoming, outgoing)
19 tested.forward_once(incoming, outgoing)

We see here a pattern which is common with Testix - specifying an entire scenario of what should happen, then making
it happen by calling the code under test.

Here’s another version of the same test

1 from testix import *
2 import forwarder
3

4 def test_forward_data_lengths():
5 tested = forwarder.Forwarder()
6 incoming = Fake('incoming_socket')
7 outgoing = Fake('outgoing_socket')
8 with Scenario() as s:
9 # we'll require that the length of the data is sent, along with a ' ' separator

10 s.incoming_socket.recv(4096) >> b'some data'
11 s.outgoing_socket.send(b'9 ')

(continues on next page)

28 Chapter 5. Read More

Testix, Release 10.2.1

(continued from previous page)

12 tested.forward_once(incoming, outgoing)
13

14 s.incoming_socket.recv(4096) >> b'other data'
15 s.outgoing_socket.send(b'10 ')
16 tested.forward_once(incoming, outgoing)
17

18 s.incoming_socket.recv(4096) >> b'even more data'
19 s.outgoing_socket.send(b'14 ')
20 tested.forward_once(incoming, outgoing)

You should use the style that makes the test most readable to you.

For later reference, here’s the code that passes this test:

class Forwarder:
def forward_once(self, read_from, write_to):

data = read_from.recv(4096)
binary = bytes(f'{len(data)} ', 'latin-1')
write_to.send(binary)

Exactness

What happens if we now change the code above to read

1 class Forwarder:
2 def forward_once(self, read_from, write_to):
3 data = read_from.recv(4096)
4 binary = bytes(f'{len(data)} ', 'latin-1')
5 write_to.send(binary)
6 write_to.close()

That is, we decided we want to close the outgoing socket for some reason.

$ python -m pytest -v docs/tutorial/other_tests/more_advanced/2/test_forward_lengths.py

...

def _fail_py_test(exceptionFactory, message):
> return pytest.fail(message)
E Failed:
E testix: ExpectationException
E testix details:
E === Scenario (no title) ===
E expected: incoming_socket.recv(4096)
E actual : outgoing_socket.close()
E === OFFENDING LINE ===
E write_to.close() (/home/yoav/work/testix/docs/tutorial/other_tests/more_
→˓advanced/2/forwarder.py:6)
E === FURTHER EXPECTATIONS (showing at most 10 out of 3) ===
E outgoing_socket.send(b'10 ')
E incoming_socket.recv(4096)

(continues on next page)

5.2. Tutorial 29

Testix, Release 10.2.1

(continued from previous page)

E outgoing_socket.send(b'14 ')
E === END ===

As you can see, the test fails, and the new .close() is now, in Testix jargon, the “offending line”.

This is because Testix expectations are asserted in an exact manner - we define exactly what we want, no more - no
less.

This makes Testix very conducive to Test Driven Development - if you change the code before changing the test - it
will probably result in failures. When approaching adding new features - start with defining a test for them.

We’ll discuss exactness some more next.

Exact Enforcement

Testix enforces function calls which are specified in a Scenario. It enforces

1. the order in which calls are made

2. the exact arguments, positional and keyword, which are used

3. unexpected calls are considered a failure

Wrong Arguments

So, e.g. if we have a test like this:

1 from testix import *
2 import my_code
3

4 def test_my_code():
5 with Scenario() as s:
6 s.source.get_names('all', order='lexicographic', ascending=True) >> ['some',

→˓'names']
7 s.destination.put_names(['some', 'names'])
8

9 my_code.go(Fake('source'), Fake('destination'))
10

The code must be some variation of

names = name_source.get_names('all', order='lexicographic', ascending=True)
and at some point later...
name_destination.put_names(names)

any of these will cause a failure:

name_source.get_names('all', 'lexicographic', True) # lexicographic should be a␣
→˓keyword argument
name_source.get_names('all', True, order='lexicographic') # ascending should be a␣
→˓keyworkd argument
name_source.get_names(spec='all', order='lexicographic', ascending=True) # spec is␣
→˓unexpected

30 Chapter 5. Read More

Testix, Release 10.2.1

Unexpected Calls

This code will also make the test fail:

def go(source, destination):
names = source.get_names('all', order='lexicographic', ascending=True)
destination.put_names(names)
destination.something_else()

and Testix will report

E Failed:
E testix: ExpectationException
E testix details:
E === Scenario (no title) ===
E unexpected call: destination.something_else()
E Expected nothing

That is, the Scenario’s various expectations were met, but then the code “surprised” Testix with another call on a
Fake object.

As we said before, the right way to specify Testix Scenarios as to specify what you want exactly - no more, no less.

Ways Around Exactness

Sometimes, this exactness is too much - Testix supports ways around this, but most of the time, it is good to be exact.
These features are out of the scope of this tutorial, and are documented separately.

Recap

We can now summarize the essentials of the Testix approach:

1. use Fake objects to simulate various entities

2. use a Scenario object to define an exact set of demands or expectations

3. the Scenario object not only defines our expectations, it is also used in a with statement to enforce them.

4. return values from Fake objects may be specified using >>.

By requiring the developer to define his or her demands using a the Scenario concept, Testix lends itself in particular to
Test Driven Development - think about testing first, write the code only after you have exactly defined what you want
it to do.

We can also now recognize some major advantages over the mock objects from the Python Standard Library.

1. Testix lends itself naturally to the Test Driven approach to development (TDD) through its Scenario concept
and the “no less - no more” approach that makes it harder to change the functionality of code without changing
the test first.

2. test syntax is more visually similar to the code under test, e.g. the s.sock.send(b'the data') is visually
similar to the same as the actual code socket.send(data). This makes tests more readable and easy to under-
stand.

3. Whatever expectations you define for you mock objects - they will be exactly enforced - defining expectations
and enforcing them is one and the same.

5.2. Tutorial 31

Testix, Release 10.2.1

5.2.5 Line Monitor Unit Tests

We now turn to developing, TDD style, our LineMonitor library.

Developing Test Driven style means we add behaviours one by one, for each behaviour we go through the RED-GREEN-
REFACTOR loop:

1. RED: write a properly failing test

2. GREEN: write code that passes the test - the code doesn’t have to be pretty

3. REFACTOR: tidy up the code to make it readable

Sometimes the REFACTOR step is not needed, but we should always at least consider it.

Let’s go.

Launching the Subprocess

High Level Design

We will implement LineMonitor as follows:

1. a LineMonitor sill launch the subprocess using the subprocess Python standard library.

2. It will attach a pseudo-terminal to said subprocess (using pty). If you don’t know too much about what a pseudo-
terminal is - don’t worry about it, I don’t either.

Essentially it’s attaching the subprocess’s input and output streams to the father process. Another way of doing this is
using pipes, but there are some technical advantages to using a pseudo-terminal.

1. it will monitor the terminal using poll() from the standard Python library’s select module. This call allows to
you check if the pseudo-terminal has any data available to read (that is, check if the subprocess has written some
output).

2. when data is available, we will read it line by line, and send it to the registered callbacks.

Let’s start by working on the launching a subprocess with an attached pseudo-terminal.

Implementation

First step is to launch the subprocess with an attached pseudo-terminal. Let’s write a test for that. We want to enforce,
using Testix, that subprocess.Popen() is called with appropriate arguments.

If the following paragraph is confusing, don’t worry - things will become clearer after you see it all working.

Since Testix’s Scenario object only tracks Testix Fake objects, we must somehow fool the LineMonitor to use a
Fake('subprocess') object instead of the actual subprocess module. We need to do the same for the pty module.

There’s more than one way of doing this, but here we will use Testix’s helper fixture, patch_module.

1 from testix import *
2 import pytest
3 import line_monitor
4

5 @pytest.fixture
6 def override_imports(patch_module):
7 patch_module(line_monitor, 'subprocess') # this replaces the subprocess object␣

→˓inside line_monitor with a Fake("subprocess") object
(continues on next page)

32 Chapter 5. Read More

https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/pty.html
https://docs.python.org/3/library/select.html

Testix, Release 10.2.1

(continued from previous page)

8 patch_module(line_monitor, 'pty') # does the same for the pty module
9

10 def test_lauch_subprocess_with_pseudoterminal(override_imports):
11 tested = line_monitor.LineMonitor()
12 with Scenario() as s:
13 s.pty.openpty() >> ('write_to_fd', 'read_from_fd')
14 s.subprocess.Popen(['my', 'command', 'line'], stdout='write_to_fd', close_

→˓fds=True)
15

16 tested.launch_subprocess(['my', 'command', 'line'])

What’s going on here?

1. First, we use patch_module to mock imported modules subprocess and pty, as described above. Note that
our test function depends on override_imports to make everything work.

2. In our Scenario we demand two things:

• That our code calls pty.openpty() to create a pseudo-terminal and obtain its two file descriptors.

• That our code then launch a subprocess and point its stdout to the write file-descriptor of the pseudo-
terminal (we also demand close_fds=True wince we want to fully specify our subprocess’s inputs and
outputs).

3. Finally, we call our .launch_subprocess() method to actually do the work - we can’t hope that our code meet
our expectations if we never actually call it, right?

A few points on this:

1. See how we first write our expectations and only then call the code to deliver on these expectations. This is one
way Testix pushes you into a Test Driven mindset.

2. In real life, pty.openpty() returns two file descriptors - which are integers. In our test, we made this call return
two strings.

We could have, e.g. define two constants equal to some integers, e.g. WRITE_FD=20 and READ_FD=30
and used those - but it wouldn’t really matter and would make the test more cluttered. Technically, what’s
important is that openpty() returns a tuple and we demand that the first item in this tuple is passed over
to the right place in the call to Popen(). Some people find fault with this style. Personally I think passing
strings around (recall that in Python strings are immutable) where all you’re testing is moving around
objects - is a good way to make a readable test.

Failing the Test

Remember, when practicing TDD you should always fail your tests first, and make sure they fail properly.

So let’s see some failures! Let’s see some RED!

Running this test with the skeleton implementation we have for LineMonitor results in:

E Failed:
E testix: ScenarioException
E testix details:
E Scenario ended, but not all expectations were met. Pending expectations␣
→˓(ordered): [pty.openpty(), subprocess.Popen(['my', 'command', 'line'], stdout = 'write_
→˓to_fd', close_fds = True)]

5.2. Tutorial 33

Testix, Release 10.2.1

Very good, our tests fails as it should: the test expects, e.g. openpty() to be called, but our current implementation
doesn’t call anything - so the test fails in disappointment.

Now that we have our RED, let’s get to GREEN.

Passing the Test

Let’s write some code that makes the test pass:

1 import subprocess
2 import pty
3

4 class LineMonitor:
5 def register_callback(self, callback):
6 pass
7

8 def launch_subprocess(self, *popen_args, **popen_kwargs):
9 write_to, read_from = pty.openpty()

10 popen_kwargs['stdout'] = write_to
11 popen_kwargs['close_fds'] = True
12 subprocess.Popen(*popen_args, **popen_kwargs)
13

14 def monitor(self):
15 pass

Running our test with this code produces

test_line_monitor.py::test_lauch_subprocess_with_pseudoterminal PASSED

Finally, we see some GREEN!

Usually we will now take the time to REFACTOR our code, but we have so little code at this time that we’ll skip it for
now.

OK, we have our basic subprocess with a pseudo-terminal - now’s the time to test for and implement actually monitoring
the output.

Monitoring The Output

Next we want to test the following behaviour: we register a callback with our LineMonitor object using its .
register_callback() method, and it calls our callback with each line of output it reads from the pseudo-terminal.

Python streams have a useful .readline() method, so let’s wrap the read file-descriptor of the pseudo-terminal with
a stream. It turns out that you can wrap a file descriptor with a simple call to the built-on open() function, so we’ll
use that.

Note that we add a new test, leaving the previous one intact. This means that we keep everything we already have
working, while we add a test for this new behaviour.

Let’s start by describing a scenario where we read several lines from the pseudo-terminal and demand that they are
transferred to our callback.

1

2 def test_receive_output_lines_via_callback(override_imports):
3 tested = line_monitor.LineMonitor()

(continues on next page)

34 Chapter 5. Read More

Testix, Release 10.2.1

(continued from previous page)

4 with Scenario() as s:
5 s.pty.openpty() >> ('write_to_fd', 'read_from_fd')
6 s.open('read_from_fd', encoding='latin-1') >> Fake('reader') # wrapping a binary␣

→˓file descriptor with a text-oriented stream requires an encoding
7 s.subprocess.Popen(['my', 'command', 'line'], stdout='write_to_fd', close_

→˓fds=True)
8

9 tested.launch_subprocess(['my', 'command', 'line'])
10

11 s.reader.readline() >> 'line 1'
12 s.my_callback('line 1')
13 s.reader.readline() >> 'line 2'
14 s.my_callback('line 2')
15 s.reader.readline() >> 'line 3'

What’s going on here?

1. We add a demand that our code create a Python stream from the pseudo-terminal’s read-descriptor before launch-
ing the subprocess.

2. We then call .launch_subprocess() to meet those demands.

3. We describe the “read-from-pseudo-terminal-forwared-to-callback” data flow for 3 consecutive lines.

4. We register a Fake('my_callback') object as our callback - this way, when the code calls the callback, it will
be meeting our demands in this test. It’s important that 'my_callback' is used as this Fake’s name, since we
refer to it in the Scenario.

5. We then call the .monitor() method - this method should do all the reading and forwarding.

We must also remember to mock the built-in open:

1 @pytest.fixture
2 def override_imports(patch_module):
3 patch_module(line_monitor, 'subprocess') # this replaces the subprocess object␣

→˓inside line_monitor with a Fake("subprocess") object
4 patch_module(line_monitor, 'pty') # does the same for the pty module
5 patch_module(line_monitor, 'open')

We can already see a problem: the scenario is actually built out of two parts - the part which tests .
launch_subprocess(), and the part which tests .monitor().

Furthermore, since we have our previous test in test_lauch_subprocess_with_pseudoterminal, which doesn’t
expect the call to open(), the two tests are in contradiction.

The way to handle this is to refactor our test a bit:

1 from testix import *
2 import pytest
3 import line_monitor
4

5 @pytest.fixture
6 def override_imports(patch_module):
7 patch_module(line_monitor, 'subprocess')
8 patch_module(line_monitor, 'pty')
9 patch_module(line_monitor, 'open')

(continues on next page)

5.2. Tutorial 35

Testix, Release 10.2.1

(continued from previous page)

10

11 def launch_scenario(s):
12 s.pty.openpty() >> ('write_to_fd', 'read_from_fd')
13 s.open('read_from_fd', encoding='latin-1') >> Fake('reader')
14 s.subprocess.Popen(['my', 'command', 'line'], stdout='write_to_fd', close_fds=True)
15

16 def test_lauch_subprocess_with_pseudoterminal(override_imports):
17 tested = line_monitor.LineMonitor()
18 with Scenario() as s:
19 launch_scenario(s)
20 tested.launch_subprocess(['my', 'command', 'line'])
21

22 def test_receive_output_lines_via_callback(override_imports):
23 tested = line_monitor.LineMonitor()
24 with Scenario() as s:
25 launch_scenario(s)
26 tested.launch_subprocess(['my', 'command', 'line'])
27

28 s.reader.readline() >> 'line 1'
29 s.my_callback('line 1')
30 s.reader.readline() >> 'line 2'
31 s.my_callback('line 2')
32 s.reader.readline() >> 'line 3'
33 s.my_callback('line 3')
34

35 tested.register_callback(Fake('my_callback'))
36 tested.monitor()

By convention, helper functions that help us modify scenarios end with _scenario.

OK this seems reasonable, let’s get some RED! Running this both our tests fail:

E Failed:
E testix: ExpectationException
E testix details:
E === Scenario (no title) ===
E expected: open('read_from_fd', encoding = 'latin-1')
E actual : subprocess.Popen(['my', 'command', 'line'], stdout = 'write_to_fd',␣
→˓close_fds = True)

We changed our expectations from .launch_subprocess() to call open(), but we did not change the implementation
yet, so Testix is surprised to find that we actually call subprocess.Popen - and makes our test fail.

Good, let’s fix it and get to GREEN. We introduce the following to our code:

1 import subprocess
2 import pty
3

4 class LineMonitor:
5 def __init__(self):
6 self._callback = None
7

8 def register_callback(self, callback):
(continues on next page)

36 Chapter 5. Read More

Testix, Release 10.2.1

(continued from previous page)

9 self._callback = callback
10

11 def launch_subprocess(self, *popen_args, **popen_kwargs):
12 write_to, read_from = pty.openpty()
13 popen_kwargs['stdout'] = write_to
14 popen_kwargs['close_fds'] = True
15 self._reader = open(read_from, encoding='latin-1')
16 subprocess.Popen(*popen_args, **popen_kwargs)
17

18 def monitor(self):
19 for _ in range(3):
20 line = self._reader.readline()
21 self._callback(line)

This passes the test, but that’s not really what we meant - right? Obviously we would like a while True to replace the
for _ in range(3) here.

However, if we write a while True, then Testix will fail us for the 4th call to .readline(), since it only expects 3
calls.

Testing infinite, while True loops is a problem, but we can get around it by injecting an exception that will terminate
the loop. Just as we can determine what calls to Fake objects return, we can make them raise exceptions.

Testix even comes with an exception class just for this use case, TestixLoopBreaker`.` Let's introduce
another ``.readline() expectation into our test, using Testix’s Throwing construct:

1 def test_receive_output_lines_via_callback(override_imports):
2 tested = line_monitor.LineMonitor()
3 with Scenario() as s:
4 launch_scenario(s)
5 tested.launch_subprocess(['my', 'command', 'line'])
6

7 s.reader.readline() >> 'line 1'
8 s.my_callback('line 1')
9 s.reader.readline() >> 'line 2'

10 s.my_callback('line 2')
11 s.reader.readline() >> 'line 3'
12 s.my_callback('line 3')
13 s.reader.readline() >> Throwing(TestixLoopBreaker) # this tells the Fake('reader

→˓') to raise an instance of TestixLoopBreaker()
14

15 tested.register_callback(Fake('my_callback'))
16 with pytest.raises(TestixLoopBreaker):
17 tested.monitor()

NOTE - we once more change the test first. Also note that we can use Throwing to raise any type of exception we
want, not just TestixLoopBreaker.

This gets us back into the RED.

E Failed: DID NOT RAISE <class 'testix.TestixLoopBreaker'>

Since our code calls .readline() 3 times exactly, the fourth call, which would have resulted in TestixLoopBreaker
being raised, did not happen.

Let’s fix our code:

5.2. Tutorial 37

Testix, Release 10.2.1

1 def monitor(self):
2 while True:
3 line = self._reader.readline()
4 self._callback(line)

And we’re back in GREEN.

Edge Case Test: When There is no Callback

What happens if .monitor() is called, but no callback has been registered? We can of course implement all kinds of
behaviour, for example, we can make it “illegal”, and raise an Exception from .monitor() in such a case.

However, let’s do something else. Let’s just define things such that output collected from the subprocess when no
callback has been registered is discarded.

1 def test_monitoring_with_no_callback(override_imports):
2 tested = line_monitor.LineMonitor()
3 with Scenario() as s:
4 launch_scenario(s)
5 tested.launch_subprocess(['my', 'command', 'line'])
6

7 s.reader.readline() >> 'line 1'
8 s.reader.readline() >> 'line 2'
9 s.reader.readline() >> 'line 3'

10 s.reader.readline() >> Throwing(TestixLoopBreaker) # this tells the Fake('reader
→˓') to raise an instance of TestixLoopBreaker()

11

12 with pytest.raises(TestixLoopBreaker):
13 tested.monitor()

Notice there’s no .register_callback() here. We demand that .readline() be called, but we don’t demand
anything else.

Running this fails with a RED

def monitor(self):
while True:

line = self._reader.readline()
> self._callback(line)
E TypeError: 'NoneType' object is not callable

Which reveals that we in fact, did not handle this edge case very well.

Let’s add code that fixes this.

1 def monitor(self):
2 while True:
3 line = self._reader.readline()
4 if self._callback is None:
5 continue
6 self._callback(line)

Our test passes - back to GREEN.

38 Chapter 5. Read More

Testix, Release 10.2.1

Edge Case Test: Asynchronous Callback Registration

What happens if we start monitoring without a callback, wait a while, and only then register a callback?

This allows a use case where we call the .monitor() (which blocks) in one thread, and register a callback in another
thread.

Let’s decide that in this case, the callback will receive output which is captured only after the callback has been regis-
tered.

Our test will be similar to test_receive_output_lines_via_callback(), however, we need to somehow make
tested.register_callback() happen somewhere between one .readline() and the next. This is not so easy to
do because of the same while True that gave us some trouble before.

Testix allows us to simulate asynchronous events like this using its Hook construct. Essentially Hook(function,
*args, **kawrgs) can be injected into the middle of a Scenario, and it will call function(*args, **kwargs)
at the point in which it’s injected.

Here’s how to write such a test:

1 def test_callback_registered_mid_monitoring(override_imports):
2 tested = line_monitor.LineMonitor()
3 with Scenario() as s:
4 launch_scenario(s)
5 tested.launch_subprocess(['my', 'command', 'line'])
6

7 s.reader.readline() >> 'line 1'
8 s.reader.readline() >> 'line 2'
9 s.reader.readline() >> 'line 3'

10 s << Hook(tested.register_callback, Fake('my_callback')) # the hook will execute␣
→˓right after the 'line 3' readline finishes

11 s.my_callback('line 3') # callback is now registered, so it should be called
12 s.reader.readline() >> Throwing(TestixLoopBreaker)
13

14 with pytest.raises(TestixLoopBreaker):
15 tested.monitor()

When we run it, we discover it’s already GREEN! Oh no!

Turns out our previous change already solved this problem. This happens sometimes in TDD, so to deal with it, we
revert our previous change and make sure this test becomes RED - and carefully check that it failed properly. Happily,
this is the case for this particular test.

5.2. Tutorial 39

Testix, Release 10.2.1

Let’s Recap

We now have our first implementation of the LineMonitor. It essentially works, but it’s still has its problems. We’ll
tackle these problems later in this tutorial, but first, let’s do a short recap.

Recap

Let’s recap a bit on what we’ve been doing in this tutorial.

We started with a test for the basic subprocess-launch behaviour, got to RED, implemented the code, and got to GREEN.

Next, when moving to implement the actual output monitoring behaviour, we kept the first test, and added a new one.
This is very important in TDD - the old test keeps the old behaviour intact - if, when implementing the new behaviour
we break the old one - we will know.

When working with Testix, you are encourage to track all your mocks (Fake objects) very precisely. This effectively
made us refactor the launch-process test scenario into a launch_scenario() helper function, since you must launch
a subprocess before monitoring it.

We also saw that adding a call to open made the original launch-process test fail as well as the new monitor test. This
makes sense, since the launching behaviour now includes a call to open that it didn’t before - and the code doesn’t
support that yet, so the test fails.

Another thing we ran into is that sometimes we get GREEN even when we wanted RED. This should make you uneasy
- it usually means that the test is not really testing what you think it is. In our case, however, it was just because an edge
case which we added a test for was already covered by our existing code. When that happens, strict TDD isn’t really
possible - and you need to revert to making sure that if you break the code on purpose, it breaks the test in the proper
manner.

YAGNI

Another thing to notice, is that the call to Popen is simply

subprocess.Popen(*popen_args, **popen_kwargs)

And not, for example,

self._process = subprocess.Popen(*popen_args, **popen_kwargs)

Why didn’t we save the subprocess in an instance variable? Working TDD makes us want to get to GREEN - no more,
no less. Since we don’t need to store the subprocess to pass the test, we don’t do it.

Let me repeat that for you: if we don’t need it to pass the test, we don’t do it.

You might say “but we need to hold on to the subprocess to control it, see if it’s still alive, or kill it”.

Well, maybe we do. If that’s what we really think, we should express this need in a test - make sure it’s RED, and then
write the code to make it GREEN.

This is one particular way of implementing the YAGNI principle - if you’re not familiar with it, you should take the
time to read about it.

Upholding the YAGNI requires a special kind of discipline, and TDD and Testix in particular, helps us achieve it.

40 Chapter 5. Read More

https://en.wikipedia.org/wiki/You_aren%27t_gonna_need_it

Testix, Release 10.2.1

Code Recap

Before we continue, here is the current state of our unit test and code.

The test:

1 from testix import *
2 import pytest
3 import line_monitor
4

5 @pytest.fixture
6 def override_imports(patch_module):
7 patch_module(line_monitor, 'subprocess')
8 patch_module(line_monitor, 'pty')
9 patch_module(line_monitor, 'open')

10

11 def launch_scenario(s):
12 s.pty.openpty() >> ('write_to_fd', 'read_from_fd')
13 s.open('read_from_fd', encoding='latin-1') >> Fake('reader')
14 s.subprocess.Popen(['my', 'command', 'line'], stdout='write_to_fd', close_fds=True)
15

16 def test_lauch_subprocess_with_pseudoterminal(override_imports):
17 tested = line_monitor.LineMonitor()
18 with Scenario() as s:
19 launch_scenario(s)
20 tested.launch_subprocess(['my', 'command', 'line'])
21

22 def test_receive_output_lines_via_callback(override_imports):
23 tested = line_monitor.LineMonitor()
24 with Scenario() as s:
25 launch_scenario(s)
26 tested.launch_subprocess(['my', 'command', 'line'])
27

28 s.reader.readline() >> 'line 1'
29 s.my_callback('line 1')
30 s.reader.readline() >> 'line 2'
31 s.my_callback('line 2')
32 s.reader.readline() >> 'line 3'
33 s.my_callback('line 3')
34 s.reader.readline() >> Throwing(TestixLoopBreaker) # this tells the Fake('reader

→˓') to raise an instance of TestixLoopBreaker()
35

36 tested.register_callback(Fake('my_callback'))
37 with pytest.raises(TestixLoopBreaker):
38 tested.monitor()

and the code that passes it

1 import subprocess
2 import pty
3

4 class LineMonitor:
5 def __init__(self):
6 self._callback = None

(continues on next page)

5.2. Tutorial 41

Testix, Release 10.2.1

(continued from previous page)

7

8 def register_callback(self, callback):
9 self._callback = callback

10

11 def launch_subprocess(self, *popen_args, **popen_kwargs):
12 write_to, read_from = pty.openpty()
13 popen_kwargs['stdout'] = write_to
14 popen_kwargs['close_fds'] = True
15 self._reader = open(read_from, encoding='latin-1')
16 subprocess.Popen(*popen_args, **popen_kwargs)
17

18 def monitor(self):
19 while True:
20 line = self._reader.readline()
21 self._callback(line)

Watching The Subprocess

If you try working with our current LineMonitor implementation you will find it has some disadvantages.

1. There is no way to stop monitoring.

2. In particular, if the underlying subprocess crashes, the monitor will just block forever - it is blocked trying to
.readline() - but the line will never come.

Furthermore, we originally wanted the ability to have more than one callback.

Let’s improve our LineMonitor, starting by handling the underlying subprocess a little more carefully. We’ll start by
checking for available data before we try to read it.

Polling the Read File Descriptor

We want to create a polling object, and register the reader’s file descriptor using its .register method.

Let’s test for it. We have to mock the select module, of course, and also change our launch_scenario().

1 @pytest.fixture
2 def override_imports(patch_module):
3 patch_module(line_monitor, 'subprocess')
4 patch_module(line_monitor, 'pty')
5 patch_module(line_monitor, 'open')
6 patch_module(line_monitor, 'select')
7 Fake('select').POLLIN = select.POLLIN
8

9 def launch_scenario(s):
10 s.pty.openpty() >> ('write_to_fd', 'read_from_fd')
11 s.open('read_from_fd', encoding='latin-1') >> Fake('reader')
12 s.select.poll() >> Fake('poller')
13 s.reader.fileno() >> 'reader_descriptor'
14 s.poller.register('reader_descriptor', select.POLLIN)
15 s.subprocess.Popen(['my', 'command', 'line'], stdout='write_to_fd', close_fds=True) >

→˓> Fake('the_process')

42 Chapter 5. Read More

https://docs.python.org/3/library/select.html#polling-objects

Testix, Release 10.2.1

There is a quick here - after running patch_module(line_monitor, 'select'), the select object inside the
tested line_monitor module is replace by a Fake('select') fake object. Later, we want to demand that poller.
register() be called with the select.POLLIN constant. As things are, this would technically also be the fake object
Fake('select.POLLIN'), since Testix automatically generates fake objects whenever you lookup a Fake’s attribute
(unless it’s explicitly set up).

While it is possible to demand

s.poller.register('reader_descriptor', Fake('select').POLLIN)

And it will work just fine, I find it less readable. Therefore I’d rather “rescue” the POLLIN object from the real select
and assign it to the fake select.

You may notice another quirk - the function .fileno() returns a file descriptor, which is an integer. However, in
our test we make it return a string value, 'reader_descriptor', and later test that this value is transmitted to the
.register() call on the polling object.

Of course it is possible to write something like

FAKE_FILE_DESCRIPTOR = 12121212
s.reader.fileno() >> FAKE_FILE_DESCRIPTOR
s.poller.register(FAKE_FILE_DESCRIPTOR, select.POLLIN)

This is totally legitimate. However, In my opinion, when testing the logic of “this object from here should get there”,
using strings (which are immutable in Python) may be more readable than using the correct data type.

Changing launch_scenario has changed our tests, let’s run them, see if they fail:

$ python -m pytest -sv docs/line_monitor/tests/unit/11/test_line_monitor.py

...

E Failed:
E testix: ExpectationException
E testix details:
E === Scenario (no title) ===
E expected: select.poll()
E actual : subprocess.Popen(['my', 'command', 'line'], stdout = 'write_to_fd',␣
→˓close_fds = True)

Yay :) we have RED. Our tests expect the new .poll() logic, but our code, of course, is still not up to date. Of course,
all of our tests now fail, since they all depend on launch_scenario() being followed exactly.

Let’s get to GREEN with this and then continue with testing the actual polling:

1 import subprocess
2 import pty
3 import select
4

5 class LineMonitor:
6 def __init__(self):
7 self._callback = None
8

9 def register_callback(self, callback):
10 self._callback = callback
11

(continues on next page)

5.2. Tutorial 43

Testix, Release 10.2.1

(continued from previous page)

12 def launch_subprocess(self, *popen_args, **popen_kwargs):
13 write_to, read_from = pty.openpty()
14 popen_kwargs['stdout'] = write_to
15 popen_kwargs['close_fds'] = True
16 self._reader = open(read_from, encoding='latin-1')
17 self._poller = select.poll()
18 self._poller.register(self._reader.fileno(), select.POLLIN)
19 subprocess.Popen(*popen_args, **popen_kwargs)
20

21 def monitor(self):
22 while True:
23 line = self._reader.readline()
24 if self._callback is None:
25 continue
26 self._callback(line)

Now our tests pass once again. We have GREEN, but we haven’t really added the actual feature we want to develop.
We want the monitor to stop monitoring once the underlying subprocess is dead, and not get blocked trying to read a
line that will never come.

This will involve using the poll object to poll the read descriptor to see that there’s some data to read before calling
.readline(). Since our tests already involve various scenarios calling .readline() - doing this TDD doesn’t mean writing
new tests - it means modifying the tests that we have.

This happens sometimes in TDD, and it’s perfectly normal. Now, let’s get to RED.

Looking at an excerpt from our tests:

with Scenario() as s:
launch_scenario(s)
tested.launch_subprocess(['my', 'command', 'line'])

s.reader.readline() >> 'line 1'
s.my_callback('line 1')
s.reader.readline() >> 'line 2'
s.my_callback('line 2')
s.reader.readline() >> 'line 3'
s.my_callback('line 3')

We want to demand that every .readline() is preceded by a .poll(), and to only be performed if there’s input
available. The .poll() call returns a list of [(file_descriptor, events), ...] pairs, where events is a bitmask
of flags indicating the state of the file descriptor (e.g. POLLIN | POLLOUT).

Still, the sequence of .poll() and .readline() is sort-of “the new readline”, it makes up a logical scenario, so let’s
write it as a scenario function, read_line_scenario.

Here is our test_receive_output_lines_via_callback, adapted to the new situation.

1

2 def read_line_scenario(s, line):
3 s.poller.poll() >> [('reader_descriptor', select.POLLIN)]
4 s.reader.readline() >> line
5

6 def end_test_scenario(s):
7 s.poller.poll() >> Throwing(TestixLoopBreaker)

(continues on next page)

44 Chapter 5. Read More

Testix, Release 10.2.1

(continued from previous page)

8

9 def test_receive_output_lines_via_callback(override_imports):
10 tested = line_monitor.LineMonitor()
11 with Scenario() as s:
12 launch_scenario(s)
13 tested.launch_subprocess(['my', 'command', 'line'])
14

15 read_line_scenario(s, 'line 1')
16 s.my_callback('line 1')
17 read_line_scenario(s, 'line 2')
18 s.my_callback('line 2')
19 read_line_scenario(s, 'line 3')
20 s.my_callback('line 3')
21 end_test_scenario(s)
22

23 tested.register_callback(Fake('my_callback'))
24 with pytest.raises(TestixLoopBreaker):
25 tested.monitor()

running this, we get |RED|

E testix: ExpectationException
E testix details:
E === Scenario (no title) ===
E expected: poller.poll()
E actual : reader.readline()

Very good. Now let’s fix our code to pass the tests. Note that we did not yet add a test for the case where the file
descriptor does not have any data to read - that come later. Always proceed in small, baby steps - and you’ll be fine.
Try to do it all at once, and you’ll crash and burn.

Getting to GREEN is super easy, we add just this one line of code:

1 def monitor(self):
2 while True:
3 self._poller.poll()
4 line = self._reader.readline()
5 if self._callback is None:
6 continue
7 self._callback(line)

Well, this is GREEN, but adds little value. It’s time for a serious test that makes sure that .readline() is called if
and only if POLLIN is present. Let’s get to RED.

We introduce a skip_line_scenario(), and introduce it into our existing tests, such that they represent the situation
when sometimes there is no data to read.

1 from testix import *
2 import pytest
3 import line_monitor
4 import select
5

6 @pytest.fixture
(continues on next page)

5.2. Tutorial 45

Testix, Release 10.2.1

(continued from previous page)

7 def override_imports(patch_module):
8 patch_module(line_monitor, 'subprocess')
9 patch_module(line_monitor, 'pty')

10 patch_module(line_monitor, 'open')
11 patch_module(line_monitor, 'select')
12 Fake('select').POLLIN = select.POLLIN
13

14 def launch_scenario(s):
15 s.pty.openpty() >> ('write_to_fd', 'read_from_fd')
16 s.open('read_from_fd', encoding='latin-1') >> Fake('reader')
17 s.select.poll() >> Fake('poller')
18 s.reader.fileno() >> 'reader_descriptor'
19 s.poller.register('reader_descriptor', select.POLLIN)
20 s.subprocess.Popen(['my', 'command', 'line'], stdout='write_to_fd', close_fds=True) >

→˓> Fake('the_process')
21

22 def test_lauch_subprocess_with_pseudoterminal(override_imports):
23 tested = line_monitor.LineMonitor()
24 with Scenario() as s:
25 launch_scenario(s)
26 tested.launch_subprocess(['my', 'command', 'line'])
27

28 def read_line_scenario(s, line):
29 s.poller.poll() >> [('reader_descriptor', select.POLLIN)]
30 s.reader.readline() >> line
31

32 def skip_line_scenario(s):
33 s.poller.poll() >> [('reader_descriptor', 0)]
34

35 def end_test_scenario(s):
36 s.poller.poll() >> Throwing(TestixLoopBreaker)
37

38 def test_receive_output_lines_via_callback(override_imports):
39 tested = line_monitor.LineMonitor()
40 with Scenario() as s:
41 launch_scenario(s)
42 tested.launch_subprocess(['my', 'command', 'line'])
43

44 read_line_scenario(s, 'line 1')
45 s.my_callback('line 1')
46 read_line_scenario(s, 'line 2')
47 s.my_callback('line 2')
48 read_line_scenario(s, 'line 3')
49 s.my_callback('line 3')
50 skip_line_scenario(s)
51 skip_line_scenario(s)
52 read_line_scenario(s, 'line 4')
53 s.my_callback('line 4')
54 end_test_scenario(s)
55

56 tested.register_callback(Fake('my_callback'))
57 with pytest.raises(TestixLoopBreaker):

(continues on next page)

46 Chapter 5. Read More

Testix, Release 10.2.1

(continued from previous page)

58 tested.monitor()
59

60 def test_monitoring_with_no_callback(override_imports):
61 tested = line_monitor.LineMonitor()
62 with Scenario() as s:
63 launch_scenario(s)
64 tested.launch_subprocess(['my', 'command', 'line'])
65

66 read_line_scenario(s, 'line 1')
67 read_line_scenario(s, 'line 2')
68 skip_line_scenario(s)
69 read_line_scenario(s, 'line 3')
70 skip_line_scenario(s)
71 end_test_scenario(s)
72

73 with pytest.raises(TestixLoopBreaker):
74 tested.monitor()
75

76 def test_callback_registered_mid_monitoring(override_imports):
77 tested = line_monitor.LineMonitor()
78 with Scenario() as s:
79 launch_scenario(s)
80 tested.launch_subprocess(['my', 'command', 'line'])
81

82 read_line_scenario(s, 'line 1')
83 skip_line_scenario(s)
84 read_line_scenario(s, 'line 2')
85 read_line_scenario(s, 'line 3')
86 s << Hook(tested.register_callback, Fake('my_callback')) # the hook will execute␣

→˓right after the 'line 3' readline finishes
87 s.my_callback('line 3') # callback is now registered, so it should be called
88 end_test_scenario(s)
89

90 with pytest.raises(TestixLoopBreaker):
91 tested.monitor()

The idea here is simple - sometimes .poll() returns a result where the POLLIN flag is not set - and then we should
skip the .readline().

Do we have RED? Yes we do:

E Failed:
E testix: ExpectationException
E testix details:
E === Scenario (no title) ===
E expected: poller.poll()
E actual : reader.readline()

Let’s get to GREEN. This requires us to add the following to our code:

1 def monitor(self):
2 while True:
3 poll_results = self._poller.poll()

(continues on next page)

5.2. Tutorial 47

Testix, Release 10.2.1

(continued from previous page)

4 _, events = poll_results[0]
5 if not (events & select.POLLIN):
6 continue
7 line = self._reader.readline()
8 if self._callback is None:
9 continue

10 self._callback(line)

This is GREEN but not the best code, the .monitor() function is becoming too long, time for the REFACTOR step
in our RED-GREEN-REFACTOR loop.

1 def monitor(self):
2 while True:
3 if not self._data_available_to_read():
4 continue
5 line = self._reader.readline()
6 if self._callback is None:
7 continue
8 self._callback(line)
9

10 def _data_available_to_read(self):
11 poll_results = self._poller.poll()
12 _, events = poll_results[0]
13 return events & select.POLLIN

Ah, much nicer.

Solving the Blocking Problem

We are now in a position not to block forever when data does not arrive. To do that, we need to add a timeout on the
.poll call - since as it is now, it may still block forever waiting for some event on the file.

Getting to RED is simple in principle, e.g. if we want a 10 seconds timeout, just change demands of our various
scenarios, e.g.

def read_line_scenario(s, line):
s.poller.poll(10) >> [('reader_descriptor', select.POLLIN)]
note the 10 second timeout above
s.reader.readline() >> line

similarly for other poll scenario functions

If we do this, however - and later on discover that a 60 second timeout is more reasonable, we will have to Test Drive
the change from 10 to 60. This seems more annoying that it is helpful. Sometimes, tests can be too specific.

Testix has a way to specifically ignore the values of specific arguments - you specify the special value
IgnoreArgument() instead of the overly specific 10.

Here’s how to use it in this case:

1 def read_line_scenario(s, line):
2 s.poller.poll(IgnoreArgument()) >> [('reader_descriptor', select.POLLIN)]
3 s.reader.readline() >> line

(continues on next page)

48 Chapter 5. Read More

https://github.com/PracticeFoxyCode/practice#short-files-short-functions

Testix, Release 10.2.1

(continued from previous page)

4

5 def skip_line_scenario(s):
6 s.poller.poll(IgnoreArgument()) >> [('reader_descriptor', 0)]
7

8 def end_test_scenario(s):
9 s.poller.poll(IgnoreArgument()) >> Throwing(TestixLoopBreaker)

Using this we get to RED

E testix: ExpectationException
E testix details:
E === Scenario (no title) ===
E expected: poller.poll(|IGNORED|)
E actual : poller.poll()

Note the |IGNORED| annotation. Getting to green is now a matter of adding this timeout in our code:

1 def _data_available_to_read(self):
2 poll_results = self._poller.poll(10)
3 _, events = poll_results[0]
4 return events & select.POLLIN

And we have GREEN again.

Oops, a bug

If you try this code, you will find that there’s a bug: in real life .poll() may return an empty list.

When we find a bug, the TDD way is of course to write a test that reproduces it, and then fix the code. In our case,
let’s add a poll_returns_empty_scenario and sprinkle it in our existing tests, thus covering the behaviour with
and without a callback, etc.

1 def skip_line_on_empty_poll_scenario(s):
2 s.poller.poll(IgnoreArgument()) >> []
3 def test_receive_output_lines_via_callback(override_imports):
4 tested = line_monitor.LineMonitor()
5 with Scenario() as s:
6 launch_scenario(s)
7 tested.launch_subprocess(['my', 'command', 'line'])
8

9 read_line_scenario(s, 'line 1')
10 s.my_callback('line 1')
11 read_line_scenario(s, 'line 2')
12 s.my_callback('line 2')
13 read_line_scenario(s, 'line 3')
14 s.my_callback('line 3')
15 skip_line_scenario(s)
16 skip_line_scenario(s)
17 skip_line_on_empty_poll_scenario(s)
18 read_line_scenario(s, 'line 4')
19 s.my_callback('line 4')
20 end_test_scenario(s)

(continues on next page)

5.2. Tutorial 49

Testix, Release 10.2.1

(continued from previous page)

21

22 tested.register_callback(Fake('my_callback'))
23 with pytest.raises(TestixLoopBreaker):
24 tested.monitor()

This gets us into RED territory

E IndexError: list index out of range

Now let’s fix the bug.

1 def _data_available_to_read(self):
2 poll_results = self._poller.poll(10)
3 if len(poll_results) == 0:
4 return False
5 _, events = poll_results[0]
6 return events & select.POLLIN

We are now GREEN, and, since we are working TDD, we have a test for this bug - and it will not return in the future.

Has the Subprocess Died?

We are now ready to add functionality to stop the monitor in case the subprocess itself has died. We will want our code
to use .poll() on the Popen object itself, and if .poll() returns a non-None value, stop the monitor.

If you think about it, we can poll the subprocess only when there’s no data available. It may be that there is data to read
and process has died, but in that case, we’ll just discover it is dead when the data runs out. This way we make sure we
read all the data out of the pipe when the process has died, even if it takes more than one read.

If, however, there’s no data to read, and the process is dead - then there’s no point in continuing to monitor the pipe for
more data, and we should close the reader, e.g.

1 def process_lives_scenario(s):
2 s.the_process.poll() >> None
3

4 def test_receive_output_lines_via_callback(override_imports):
5 tested = line_monitor.LineMonitor()
6 with Scenario() as s:
7 launch_scenario(s)
8 tested.launch_subprocess(['my', 'command', 'line'])
9

10 read_line_scenario(s, 'line 1')
11 s.my_callback('line 1')
12 read_line_scenario(s, 'line 2')
13 s.my_callback('line 2')
14 read_line_scenario(s, 'line 3')
15 s.my_callback('line 3')
16 skip_line_scenario(s)
17 process_lives_scenario(s)
18 skip_line_scenario(s)
19 process_lives_scenario(s)
20 skip_line_on_empty_poll_scenario(s)
21 process_lives_scenario(s)

(continues on next page)

50 Chapter 5. Read More

Testix, Release 10.2.1

(continued from previous page)

22 read_line_scenario(s, 'line 4')
23 s.my_callback('line 4')
24 end_test_scenario(s)
25

26 tested.register_callback(Fake('my_callback'))
27 with pytest.raises(TestixLoopBreaker):
28 tested.monitor()

Note that we demand process polling only after no data was ready to read, here it only comes after some
skip_line*scenario function.

This brings us into RED territory. Current we have not taken the case that the process dies into account, but as usual,
we’re taking things slowly. Let’s get to GREEN.

1 def launch_subprocess(self, *popen_args, **popen_kwargs):
2 write_to, read_from = pty.openpty()
3 popen_kwargs['stdout'] = write_to
4 popen_kwargs['close_fds'] = True
5 self._reader = open(read_from, encoding='latin-1')
6 self._poller = select.poll()
7 self._poller.register(self._reader.fileno(), select.POLLIN)
8 self._process = subprocess.Popen(*popen_args, **popen_kwargs)
9

10 def monitor(self):
11 while True:
12 if not self._data_available_to_read():
13 self._process.poll()
14 continue
15 line = self._reader.readline()
16 if self._callback is None:
17 continue
18 self._callback(line)

Note that this is the first time we bothered to save the subprocess Popen object! This is another example of how
TDD helps us. If the test passes without us making some move - then we simply don’t make it. This helps us write
minimalistic code. Remember, code that doesn’t exist - has no bugs.

We are now in GREEN - so let’s get into RED again, and add a specific test for the “process has died scenario”:

1 def process_died_scenario(s):
2 s.the_process.poll() >> 'some_exit_code'
3 s.reader.close()
4

5 def test_receive_output_lines_via_callback__process_ends__orderly_close(override_
→˓imports):

6 tested = line_monitor.LineMonitor()
7 with Scenario() as s:
8 launch_scenario(s)
9 tested.launch_subprocess(['my', 'command', 'line'])

10

11 read_line_scenario(s, 'line 1')
12 s.my_callback('line 1')
13 read_line_scenario(s, 'line 2')

(continues on next page)

5.2. Tutorial 51

Testix, Release 10.2.1

(continued from previous page)

14 s.my_callback('line 2')
15 read_line_scenario(s, 'line 3')
16 s.my_callback('line 3')
17 skip_line_scenario(s)
18 process_lives_scenario(s)
19 skip_line_scenario(s)
20 process_died_scenario(s)
21

22 tested.register_callback(Fake('my_callback'))
23 tested.monitor()

Note that we no longer need the TestixLoopBreaker trick - since we now expect the .monitor() function to simply
finish and break out of its infinite loop.

Are we in RED? Yes we are:

E testix: ExpectationException
E testix details:
E === Scenario (no title) ===
E expected: reader.close()
E actual : poller.poll(10)

The test wants the infinite loop to finish and close the reader, but the code just goes on.

Let’s fix our code:

1 def monitor(self):
2 while True:
3 if not self._data_available_to_read():
4 exit_code = self._process.poll()
5 if exit_code is not None:
6 self._reader.close()
7 break
8 continue
9 line = self._reader.readline()

10 if self._callback is None:
11 continue
12 self._callback(line)

We’re GREEN, but this function has grown too long again, so let’s REFACTOR.

1 def monitor(self):
2 while True:
3 if not self._data_available_to_read():
4 if self._alive():
5 continue
6 self._cleanup()
7 return
8 line = self._reader.readline()
9 if self._callback is None:

10 continue
11 self._callback(line)
12

13 def _alive(self):
(continues on next page)

52 Chapter 5. Read More

Testix, Release 10.2.1

(continued from previous page)

14 exit_code = self._process.poll()
15 return exit_code is None
16

17 def _cleanup(self):
18 self._reader.close()
19

Not shorter, but more semantically clear, at least it my opinion. Since we have tests, we can refactor without fear - since
we can always make sure we are still in the GREEN!

5.2.6 Conclusion

We can finally run our end-to-end test:

$ python -m pytest -sv docs/line_monitor/tests/e2e/test_line_monitor.py
== test session starts␣
→˓===
platform linux -- Python 3.10.7, pytest-7.0.1, pluggy-1.0.0 -- /home/yoav/.cache/
→˓pypoetry/virtualenvs/testix-rvJpiJ6N-py3.10/bin/python
cachedir: .pytest_cache
hypothesis profile 'default' -> database=DirectoryBasedExampleDatabase('/home/yoav/work/
→˓testix/.hypothesis/examples')
rootdir: /home/yoav/work/testix
plugins: asyncio-0.16.0, cov-3.0.0, hypothesis-6.37.0
collected 1 item

docs/line_monitor/tests/e2e/test_line_monitor.py::test_line_monitor PASSED

=== 1 passed in 0.08s␣
→˓==

We have plenty of tests, and 100% code coverage.

docs/line_monitor/tests/unit/26/test_line_monitor.py::test_lauch_subprocess_with_
→˓pseudoterminal PASSED
docs/line_monitor/tests/unit/26/test_line_monitor.py::test_receive_output_lines_via_
→˓callback PASSED
docs/line_monitor/tests/unit/26/test_line_monitor.py::test_monitoring_with_no_callback␣
→˓PASSED
docs/line_monitor/tests/unit/26/test_line_monitor.py::test_callback_registered_mid_
→˓monitoring PASSED
docs/line_monitor/tests/unit/26/test_line_monitor.py::test_receive_output_lines_via_
→˓callback__process_ends__orderly_close PASSED

---------- coverage: platform linux, python 3.10.7-final-0 -----------
Name Stmts Miss Cover Missing

docs/line_monitor/source/26/line_monitor.py 38 0 100%

Since we practiced Test Driven Development:

1. Every single line of our code is justified.

5.2. Tutorial 53

Testix, Release 10.2.1

2. Every edge case we thought about is documented - via our tests. While tests written in Python are less readable
than actual documentation written in English - they are much, much more reliable. If we have a good CI system
to run our tests - this form of documentation does not get outdated.

3. Every bugfix that was performed was first reproduced with a test - and only then fixed in the code - proving that
the bug is, in fact, fixed.

4. Our code is minimalist - we do not have unneeded code “just in case” which always ends up causing bugs.

But we should also mention the higher level benefits:

1. We coaxed the problem into an unambiguous, technically well-defined form - a bunch of tests.

2. Thus, we made sure that we understand the problem at hand.

3. Only then, did we proceed to try to solve it.

4. And when we did, we had the means to prove it.

Returning to the student analogy from “The Importance of Proper Failure”, we gave the student a test to solve, instead
of writing a test to fit the student’s solution.

In one word - we were logical about it.

This is the proper way to write code. When done properly, it increases both development speed and the quality of the
product delivered.

Now you know.

Use this knowledge. Write good code.

5.2.7 More About Readability

TDD is a great help for code quality and correctness.

However, there is more to high quality, readable code than TDD.

I’ve summarized good practices learned over many years, you are welcome to use them - see here.

54 Chapter 5. Read More

https://github.com/PracticeFoxyCode/practice

	The Test-First Mocking Framework
	Quick Example
	Some Advanced Features
	Advantages
	Read More
	Reference
	Basic Usage: Scenarios and Fake Objects
	Scenarios and Fake Objects
	More Complex Expectations
	Overriding Imported Modules With Fake Objects
	Using patch_module To Mock Builtin Objects
	Using patch_module With Arbitrary Values

	The Most Common Ways To Create Fake Objects

	Less Strict Expectations
	Less Specific Arguments
	Unordered Expectations

	Context Manager Expectations
	Advanced Argument Expectations
	Ignoring The Call Details
	Testing for Object Identity
	Capturing Arguments
	Implementing Arbitrary Argument Matching

	AsyncIO Support
	AsyncIO Expectations
	AsyncIO Context Managers

	Tutorial
	Design of the LineMonitor
	Unit Tests
	Integration Tests
	End-to-End (E2E) Tests

	End-to-End Test
	Tests Driving our Code

	Failing Properly
	The Importance of Proper Failure

	Testix Basics
	Working With Scenarios and Fake Objects
	Mock Objects
	The Standard Library Way - unittest.mock
	Testix Fake Objects and Scenarios
	Setting the Expectations
	Meeting the Expectations

	More Advanced Tests
	Specifying Return Values
	Exactness

	Exact Enforcement
	Wrong Arguments
	Unexpected Calls
	Ways Around Exactness

	Recap

	Line Monitor Unit Tests
	Launching the Subprocess
	High Level Design
	Implementation
	Failing the Test
	Passing the Test

	Monitoring The Output
	Edge Case Test: When There is no Callback
	Edge Case Test: Asynchronous Callback Registration
	Let’s Recap

	Recap
	YAGNI
	Code Recap

	Watching The Subprocess
	Polling the Read File Descriptor
	Solving the Blocking Problem
	Oops, a bug

	Has the Subprocess Died?

	Conclusion
	More About Readability

